Правила эксплуатации

Отопление с естественной циркуляцией: особенности и принцип действия. Системы отопления дачных и загородных домов

Отопление с естественной циркуляцией: особенности и принцип действия. Системы отопления дачных и загородных домов

Естественная циркуляция

циркуляция теплоносителя в контуре реактора или другого аппарата, обусловленная не работой насоса, а разницей температур «низа» и «верха». За счет естественной циркуляции обеспечивается расхолаживание ядерного реактора на АС при аварийной потере электропитания собственных нужд АС.


Термины атомной энергетики. - Концерн Росэнергоатом , 2010

Смотреть что такое "Естественная циркуляция" в других словарях:

    естественная циркуляция - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN natural circulation …

    Естественная циркуляция теплоносителя циркуляция теплоносителя в водо водяном кипящем реакторе, осуществляемая за счет разности масс столба воды в кольцевом зазоре между корзиной и корпусом реактора и столба пароводяной смеси в активной зоне.… … Термины атомной энергетики

    - (Circulation) 1. Движение газов и жидкостей по замкнутому контуру. Циркуляция. В зависимости от причин, ее вынуждающих, делится на Ц. естественную и Ц. принудительную. Ц. естественная является следствием различия в плотности (и температуры) в… … Морской словарь

    естественная вентиляция Справочник технического переводчика

    естественная вентиляция - Перемещение воздуха и его замещение свежим воздухом под действием ветра и/или перепада температуры. [ГОСТ Р МЭК 60050 426 2006] вентиляция естественная Вентиляция, при которой воздух поступает в помещение и удаляется из него за счёт разности… … Справочник технического переводчика

    В шахтах (a. natural draught; natural ventilation; н. naturlicher Luftzug; ф. tirage d air naturel; и. ventilacion natural de aire) движение воздуха в шахтных выработках под действием гл. обр. разл. его плотности (в меньшей степени… … Геологическая энциклопедия

    ESE на 110кВ Силовой трансформатор стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему … Википедия

    силовой трансформатор - Трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приема и использования электрической энергии. Примечание. К силовым относятся трансформаторы трехфазные и… … Справочник технического переводчика

    Президент Джимми Картер покидает АЭС Три Майл Айленд после личного визита 1 апреля 1979 года … Википедия

    ХОЛОДИЛЬНИКИ - ХОЛОДИЛЬНИКИ, сооружения для охлаждения и хранения скоропортящихся продуктов. Холодильник состоит: а) из охлаждаемых помещений или камер, куда помещаются охлаждаемые продукты, б) машинного и аппаратного отделения, где вырабатывается холод. Для… … Большая медицинская энциклопедия

Сооружение автономной сети отопления гравитационного типа выбирают, если нецелесообразно, а иногда и невозможно установить циркуляционный насос или подключиться к централизованному электроснабжению.

Такая система обходится дешевле в обустройстве и полностью независима от электричества. Однако ее работоспособность во многом зависит от точности проектирования.

Чтобы система отопления с естественной циркуляцией функционировала бесперебойно, необходимо рассчитать ее параметры, правильно установить компоненты и обоснованно выбрать схему водяного контура. Мы поможем в решении этих вопросов.

Мы описали главные принципы работы гравитационной системы, привели советы по выбору трубопровода, обозначили правила сборки контура и размещения рабочих узлов. Отдельное внимание мы уделили особенностям проектирования и функционирования одно- и двухтрубной схемам отопления.

Процесс движения воды в контуре отопления без применения циркуляционного насоса происходит в силу естественных физических законов.

Понимание природы этих процессов позволит грамотно для типовых и нестандартных случаев.

Галерея изображений

Максимальная разность гидростатического давления

Основное физическое свойство любого теплоносителя (воды или антифриза), которое способствует его движению по контуру при естественной циркуляции – уменьшение плотности при увеличении температуры.

Плотность горячей воды меньше, чем холодной и поэтому возникает разница в гидростатическом давлении теплого и холодного столба жидкости. Холодная вода, стекая к теплообменнику, вытесняет горячую вверх по трубе.

Движущей силой воды в контуре при естественной циркуляции является перепад гидростатического давления между холодным и горячим столбами жидкости

Отопительный контур дома можно условно разделить на несколько фрагментов. По “горячим” фрагментам вода направляется вверх, а по “холодным” – вниз. Границами фрагментов являются верхняя и нижняя точка системы отопления.

Главной задачей при моделировании воды является достижение максимально возможной разницы между давлением столба жидкости в “горячем” и “холодном” фрагментах.

Классическим для естественной циркуляции элементом водяного контура является коллектор разгона (главный стояк) – вертикальная труба, направленная вверх от теплообменника.

Коллектор разгона должен иметь максимальную температуру, поэтому его утепляют на всей протяженности. Хотя, если высота коллектора не велика (как для одноэтажных домов), то можно не проводить утепление, так как вода в нем не успеет остыть.

Обычно систему проектируют таким образом, чтобы верхняя точка коллектора разгона совпадала с верхней точкой всего контура. Там устанавливают выход на или клапан для отвода воздуха, если используют мембранный бак.

Тогда длина “горячего” фрагмента контура является минимально возможной, что приводит к уменьшению теплопотерь на этом участке.

Также желательно, чтобы “горячий” фрагмент контура не сочетался с длительным участком, транспортирующим остывший теплоноситель. В идеале нижняя точка водяного контура совпадает с нижней точкой теплообменника, помещенного в устройство нагрева.

Чем ниже в системе отопления расположен котел, тем меньше гидростатическое давление столба жидкости в горячем фрагменте контура

Для “холодного” сегмента водяного контура тоже есть свои правила, увеличивающие давление жидкости:

  • чем больше теплопотери на “холодном” участке отопительной сети , тем ниже температура воды и больше ее плотность, поэтому функционирование систем с естественной циркуляцией возможно только при значительной теплоотдаче;
  • чем больше расстояние от нижней точки контура к подключению радиаторов , тем больше участок столба воды с минимальной температурой и максимальной плотностью.

Чтобы обеспечить выполнение последнего правила, часто печь или котел устанавливают в самой нижней точке дома, например, в подвале. Таким размещением котла обеспечивают максимально возможное расстояние между нижним уровнем радиаторов и точкой входа воды в теплообменник.

Однако высота между нижней и верхней точками водяного контура при естественной циркуляции не должна быть слишком большой (на практике не более 10 метров). Печь или котел, нагревают только теплообменник и нижнюю часть коллектора разгона.

Если этот фрагмент незначителен относительно всей высоты водяного контура, то падение давления в “горячем” фрагменте контура будет несущественным и процесс циркуляции не будет запущен.

Использование систем с естественной циркуляции для двухэтажных строений вполне оправдано, а для большей этажности будет необходим циркуляционный насос

Минимизация сопротивления движению воды

При проектировании системы с естественной циркуляцией необходимо учитывать скорость движения теплоносителя по контуру.

Во-первых , чем быстрее скорость, тем быстрее будет происходить передача тепла по системе “котел – теплообменник – водяной контур – радиаторы отопления – помещение”.

Во-вторых , чем быстрее скорость жидкости через теплообменник, тем меньше вероятность ее закипания, что особенно важно при печном отоплении.

Закипание воды в системе может обойтись очень дорого – стоимость демонтажа, ремонта и обратной установки теплообменника требует много времени и средств

При водяном отоплении с естественной циркуляцией скорость зависит от следующих факторов:

  • разницы давления между фрагментами контура в нижней его точке;
  • гидродинамического сопротивления отопительной системы.

Способы обеспечения максимальной разницы давления были рассмотрены выше. Гидродинамическое сопротивление реальной системы не поддается точному расчету по причине сложной математической модели и большого числа входящих данных, точность которых трудно гарантировать.

Тем не менее, существуют общие правила, соблюдение которых позволит уменьшить сопротивление отопительного контура.

Основным причинами снижения скорости движения воды являются сопротивление стенок труб и присутствие сужений из-за наличия фитингов или запорной арматуры. При небольшой скорости потока сопротивление стенок практически отсутствует.

Исключение составляют длинные и тонкие трубы, характерные для отопления с помощью . Как правило, для него выделяют отдельные контуры с принудительной циркуляцией.

При выборе типов труб для контура с естественной циркуляцией придется учитывать наличие технических сужений при монтаже системы. Поэтому использовать при естественной циркуляции воды нежелательно по причине соединения их фитингами, со значительно меньшим внутренним диаметром.

Правила выбора и монтажа труб

Уклон магистрали обратки делают, как правило, по ходу движения охлажденной воды. Тогда нижняя точка контура будет совпадать с входом обратной трубы в теплогенератор.

Самая распространенная комбинация направления уклона подающей и обратной труб для удаления воздушных пробок из водяного контура с естественной циркуляцией

При небольшой площади в контуре с естественной циркуляцией необходимо не допустить попадания воздуха в узкие и горизонтально расположенные трубы этой обогревательной системы. Необходимо поставить устройство удаления воздуха перед теплым полом.

Однотрубные и двухтрубные схемы отопления

При разработке схемы отопления дома с естественной циркуляцией воды возможно проектирование как одного, так и нескольких отдельных контуров. Они могут существенно отличаться друг от друга. Вне зависимости от длины, количества радиаторов и других параметров, их выполняют по однотрубной или двухтрубной схеме.

Контур с использованием одной магистрали

Систему отопления с использованием одной и той же трубы для последовательного подвода воды к радиаторам называют однотрубной. Самым простым однотрубным вариантом является отопление металлическими трубами без использования радиаторов.

Это наиболее дешевый и наименее проблемный способ решения обогрева дома при выборе в пользу естественной циркуляции теплоносителя. Единственный значимый минус – внешний вид громоздких труб.

При самом экономном с радиаторами отопления, горячая вода последовательно протекает через каждое устройство. Здесь необходимо минимальное количество труб и запорной арматуры.

По мере прохождения остывает, поэтому последующие радиаторы получают воду более холодную, что необходимо учитывать при расчете количества секций.

Простая однотрубная схема (вверху) требует минимального количества монтажных работ и вложенных средств. Более сложный и затратный вариант внизу позволяет отключать радиаторы без остановки всей системы

Самым эффективным способом подключения приборов отопления к однотрубной сети считается диагональный вариант.

Согласно этой схеме контуров отопления с естественным типом циркуляции горячая вода поступает в радиатор сверху, после охлаждения отводится через расположенный внизу патрубок. При прохождении подобным образом нагретая вода отдает максимальное количество тепла.

При нижнем подключении к батарее как входного патрубка, так и выходного, теплоотдача существенно уменьшается, потому что нагретому теплоносителю надо пройти максимально длинный путь. Из-за значительного остывания в подобных схемах не используются батареи с большим количеством секций.


«Ленинградка» характеризуется внушительными теплопотерями, которые необходимо учитывать при расчете системы. Плюс ее в том, что при использовании запорных вентилей на входном и выходном патрубке приборы выборочно можно отключать для ремонта без остановки отопительного цикла (+)

Отопительные контуры с подобным подключением радиаторов получили название “ “. Несмотря на отмеченные потери тепла, им отдают предпочтение в обустройстве систем квартирного отопления, что обусловлено более эстетичным видом прокладки трубопровода.

Существенным недостатком однотрубных сетей является невозможность отключить одну из секций отопления без прекращения циркуляции воды по всему контуру.

Поэтому обычно применяют модернизацию классической схемы с установкой “ ” для обхода радиатора с помощью ответвления с двумя шаровыми кранами или трехходовым краном. Это позволяет регулировать подачу воды к радиатору, вплоть до полного его отключения.

Для двух и более этажных строений применяют варианты однотрубной схемы с вертикальными стояками. В этом случае распределение горячей воды более равномерное, чем при горизонтальных стояках. К тому же вертикальные стояки менее протяженные и лучше вписываются в интерьер дома.

Однотрубную схему с вертикальной разводкой успешно применяют при обогреве двухэтажных помещений с использованием естественной циркуляции. Представлен вариант с возможностью отключения верхних радиаторов

Вариант с применением обратной трубы

Когда одну трубу используют для подачи горячей воды к радиаторам, а вторую – для отвода охлажденной к котлу или печи, такую схему отопления называют двухтрубной. Подобную систему при наличии радиаторов отопления используют чаще, чем однотрубную.

Она более дорогая, так как требует монтажа дополнительной трубы, но имеет ряд значимых преимуществ:

  • более равномерное распределение температуры подаваемого к радиаторам теплоносителя;
  • проще выполнить расчет зависимости параметров радиаторов от площади отапливаемого помещения и необходимых значениях температуры;
  • эффективней регулировка подачи тепла к каждому радиатору.

В зависимости от направления движения охлажденной воды относительно горячей, подразделяют на попутные и тупиковые. В попутных схемах движение охлажденной воды происходит в том же направлении, что и горячей, поэтому длина цикла для всего контура совпадает.

В тупиковых схемах, охлажденная вода движется навстречу горячей, поэтому для разных радиаторов длины циклов оборота теплоносителя отличаются. Так как скорость в системе небольшая, то и время нагрева может существенно отличаться. Те радиаторы, у которых длина цикла круговорота воды меньше, будут нагреты быстрее.

При выборе тупиковой и попутной схем отопления исходят в первую очередь из удобства проведения обратной трубы

Существует два типа расположения подводки относительно радиаторов отопления: верхняя и нижняя. При верхней подводке труба, подающая горячую воду, располагается выше радиаторов отопления, а при нижней подводке – ниже.

При нижней подводке возможно удаление воздуха через радиаторы и отсутствует необходимость проведения труб поверху, что хорошо с позиции дизайна помещения.

Однако без коллектора разгона перепад давления будет гораздо меньше, чем при использовании верхней подводки. Поэтому нижнюю подводку при отоплении помещений по принципу естественной циркуляции практически не применяют.

Выводы и полезное видео по теме

Организация однотрубной схема на основе электрокотла для небольшого дома:

Работа двухтрубной системы для одноэтажного деревянного дома на основе твердотопливного котла длительного горения:

Использование естественной циркуляции при движении воды в отопительном контуре требует точных расчетов и технически грамотного выполнения монтажных работ. При выполнении этих условий система отопления будет качественно нагревать помещения частного дома и избавит хозяев от шума насоса и зависимости от электроэнергии.

Надёжная работа парового котла возможна при условии непрерывного отвода теплоты, передаваемой газами поверхности нагрева. Теплота отводится нагреваемой средой, т.е. водой, паром или пароводяной смесью. Хороший отвод теплоты нагреваемой средой обеспечивается при правильной организации циркуляции.

Циркуляция – многократное движение воды по замкнутому контуру.

Контур циркуляции – замкнутая система непрерывного движения воды и пароводяной смеси по трубам, подключённым к паровому и водяным коллекторам котла.

Непрерывное движение воды и пароводяной смеси в циркуляционном контуре водотрубного котла осуществляется вследствие разности их плотностей (естественная циркуляция ) или с помощью циркуляционных насосов (принудительная циркуляция ).

Контуры циркуляции бывают независимыми и смешанными . У независимого контура циркуляции опускные трубы обслуживают только свой контур, а у смешанного – опускные трубы питают водой подъёмные трубы нескольких контуров.

В водотрубном паровом котле (рис. 6.1) вода из пароводяного коллектора 4 по опускным трубам 2 и 5 , наиболее удалённым от топки и получающим меньше теплоты, поступает в водяные коллекторы 1 и 7 . Опускные трубы 5 являются обогреваемыми, 2 – необогреваемыми. Первые получают теплоту, идущую на подогрев воды, а вторые теплоту практически не получают. Трубы 6 конвективного пучка и трубы 3 экрана, воспринимающие больше теплоты, являются подъёмными – по ним движется в коллектор 4 образующаяся пароводяная смесь. В пароводяном коллекторе происходит разделение пара и воды, смешение питательной воды с котловой и организация поступления воды в опускные трубы. У большинства котлов все конвективные пучки труб подъёмные, а опускные необогреваемые трубы размещаются за первым рядом бокового экрана или в воздушных коробах фронта котла, т.е. вне топки.

Во вспомогательном огнетрубном котле и утилизационном газотрубном котле, относящихся к котлам с неорганизованной циркуляцией, процесс циркуляции осуществляется благодаря восходящим потокам на участках поверхностей нагрева наиболее обогреваемых и нисходящим потокам – на необогреваемых или слабообогреваемых участках.

Расход воды через циркуляционный контур превышает количество образующегося в нём пара.

Кратность циркуляции – отношение расхода циркулирующей воды к паропроизводительности контура:

Кратность циркуляции показывает, сколько раз должна пройти по контуру определённая масса воды, чтобы полностью превратиться в пар.

k ц = 20 – 70 в ГК

k ц = 20 – 40 в ВК

k ц = 2 – 10 в УК с принудительной циркуляцией.



Движущий напор циркуляции – разность масс столбов воды и пароводяной смеси соответственно в опускных и подъёмных трубах контура.

Высота подъёмной трубы складывается из экономайзерного участка h э (рис. 6.2), в котором вода, поступающая из водяного коллектора, доводится до кипения, и участка h п, называемого высотой паросодержащей части. На участке h п происходит парообразование и восходящее движение пароводяной смеси. Движущий напор зависит от высоты паросодержащей части и разности плотностей воды и пароводяной смеси, находящихся практически при одинаковой температуре.

Полезный напор циркуляции – разность между значениями движущего напора и сопротивлений движению в подъёмных трубах.

Скорость циркуляции – скорость входа воды в подъёмные трубы контура [т/ч]. В зависимости от расположения пучков труб по отношению к источнику теплоты значения скорости циркуляции составляют 0,3 – 1,5 м/с.

Застой циркуляции – замедление или прекращение движения пароводяной смеси вверх. Это явление возникает в случае неравномерного обогрева или загрязнения парообразующих труб, расположенных в одном ряду. При застое циркуляции в менее нагретых трубах образуется свободный уровень воды. По участку труб, расположенному выше свободного уровня, будет медленно двигаться пар, а не пароводяная смесь. Нормального отвода теплоты от стенки обогреваемой трубы не будет и произойдёт аварийный перегрев металла.

Опрокидывание циркуляции – явление, при котором в подъёмных трубах, получающих по сравнению с другими трубами ряда меньше теплоты, происходит выделение пара и его подъём с одновременным опусканием воды. Причины и последствия опрокидывания те же, что и при застое циркуляции.

В горизонтальных трубах и трубах с небольшим уклоном к горизонту возможно расслоение пароводяной смеси . При движении пароводяной смеси с небольшой скоростью пар, имеющий меньшую плотность, чем вода, поднимается и отделяется от воды, в результате чего возникает раздельное движение по трубе воды и пара. Это приводит к перегреву участков труб, омываемых паром. Расслоение пароводяной смеси усиливается с увеличением диаметра труб, снижением скорости движения среды, повышением давления пара.

Кавитация – явление, при котором во входном сечении опускной трубы происходит парообразование. Оно может наступить, если статическое давление в этом сечении окажется меньше давления в пароводяном коллекторе. При кавитации нарушается нормальное поступление воды в опускные трубы, следовательно, и в подъёмные. Образующиеся паровые пузырьки и их конденсация вызывают в трубах гидравлические удары, которые могут быть причиной образования трещин в трубах. Для предотвращения кавитации следует поддерживать уровень воды в пароводяном коллекторе не менее чем на 50 ммвыше верхней кромки входного сечения опускных труб.

С целью обеспечения надёжной циркуляции необходимо содержать в чистоте поверхности нагрева, не допускать резких колебаний давления пара, поддерживать нормальный уровень воды в пароводяном коллекторе, особенно при качке, а также не допускать модернизационных мероприятий без предварительной оценки надёжности циркуляции для нового варианта котла.

Одной из самых простых является система отопления с естественной циркуляцией. Однако эта простота при отсутствии надлежащего опыта работ с такими системами может «вылезти боком» в процессе эксплуатации.

Отопление с естественной циркуляцией было широко распространено еще десяток лет назад в загородных небольших домах и некоторых квартирах с индивидуальным отоплением. Сейчас же рынок «завоевывают» системы с принудительной циркуляцией теплоносителя, благодаря возможностям, которые они предоставляют.

Но поговорим все же про водяное отопление с естественной циркуляцией.

Конструкционные особенности системы

Системы отопления с естественной циркуляцией включают в свой состав:

  • отопительный котел, нагревающий воду;
  • подающий трубопровод, «поставляющий» горячую воду к отопительным приборам (радиаторам);
  • обратный трубопровод, по которому вода возвращается в котел;
  • нагревательные приборы - радиаторы, отдающие тепло в окружающую среду;
  • , предназначенный для компенсации температурного расширения жидкости.

Принцип действия системы

Вода, нагреваясь в котле, поднимается вверх по центральному стояку и по подающему трубопроводу поступает в радиаторы отопления (нагревательные приборы), где отдает часть своего тепла. Далее уже охлажденная вода по обратному трубопроводу вновь поступает в котел и снова нагревается. Затем цикл повторяется, обеспечивая комфортную температуру в отапливаемом помещении.

Для обеспечения естественной циркуляции теплоносителя (обычно воды) в системе горизонтальные части трубопровода монтируются с уклоном не менее 1 см на погонный метр длины горизонтального участка системы отопления.

Горячая вода, вследствие уменьшения своей плотности при нагревании, поднимается по центральному стояку вверх, выдавливаемая холодной водой, возвращающейся в котел. Далее самотеком растекается по подающему трубопроводу к радиаторам отопления. После «пребывания» в них вода также самотеком стекает обратно в котел, вновь выдавливая вверх уже нагретую в котле воду.

Воздух, попавший с теплоносителем в систему, может создать воздушную пробку в радиаторах отопления, но, зачастую, в таких системах отопления с естественной циркуляцией пузырьки воздуха благодаря уклонам трубопровода «путешествуют» вверх и выходят в расширительный бачок открытого типа (бак, контактирующий с атмосферным воздухом).

Расширительный бачок предназначен для поддержания постоянного давления в системе отопления, благодаря тому, что он заполняется увеличившимся при нагревании объемом теплоносителя, который затем «отдает» обратно в систему при понижении температуры жидкости.

Делаем выводы!

Итак! Подъем воды в системе (стояке к подающей трубе) осуществляется благодаря разнице между плотностями нагретой и охлажденной жидкости. Движение же (циркуляция) поддерживается еще и благодаря гравитационному давлению (обратная труба).

При движении теплоносителя по трубопроводу в системе отопления с естественной циркуляцией на жидкость действуют силы сопротивления:

  • трение жидкости о стенки труб (для снижения используются трубы большого диаметра);
  • изменение направления движения жидкостью на поворотах, ответвлениях, каналах отопительных приборов (радиаторов).

Основные физические параметры системы отопления с естественной циркуляцией

Циркуляционный напор Рц - физическая величина, определяемая разностью высот центров котла и самого нижнего отопительного прибора (радиатора).


Чем больше разница высот (h) и разница плотностей нагретой (ρ г) и охлажденной (ρ о) жидкостей в системе, тем более качественная и стабильная будет циркуляция теплоносителя.

Р ц =h(ρ о -ρ г)=м(кг/м 3 -кг/м 3)=кг/м 2 =мм.вод.ст.

«Поищем» причину появления циркуляционного напора в системе отопления с естественной циркуляцией в «дебрях» законов физики.

Если допустить, что температура теплоносителя в системе отопления «делает прыжок» между центрами приборов (котла и радиаторов), то есть верхняя часть системы содержит более горячую воду, чем нижняя часть системы.

Плотность (ρ г)(ρ г).

Отсекаем (мысленно) верхнюю часть на схеме контура и… Что мы видим? Знакомую картину со школы - два сообщающихся сосуда, находящиеся на разном уровне. А это приведет к тому, что жидкость с более высокой точки по действием гравитационной силы будет перетекать в более низкую.

Вследствие того, что отопительная система представляет собой замкнутый контур, то вода не выплескивается, а просто стремиться выровнять свой уровень, что приводит к выталкиванию нагретой воды вверх и к дальнейшему ее «самостоятельному гравитационному» пути по системе отопления.

Вывод таков! Основополагающим показателем циркуляционного напора является разница высот установки котла и последнего (нижнего) в системе радиатора. Поэтому в системах отопления частных домов котлы по возможности располагают в подвалах, соблюдая предельную высоту в 3 м.

В квартирных вариантах котлы стараются «углубить» до плиты перекрытия, соответственно «пожарообезопасив» «гнездо» посадки котла в пол.

Согласно формуле, приведенной выше, на циркуляционный напор существенной влияние оказывает и разница плотностей холодной и горячей воды в системе.

Система отопления с естественной циркуляцией является саморегулируемой системой, то есть, например, при повышении температуры нагрева теплоносителя естественным образом (см. формулу) увеличивается циркуляционный напор и, соответственно, расход воды.

При низкой температуре в отапливаемом помещении разница плотностей воды большая и циркуляционный напор достаточно большой. При прогреве помещения теплоноситель уже не так остывает в радиаторах, и разница плотностей нагретого и охлажденного теплоносителя уменьшается. Соответственно уменьшается и циркуляционный напор, уменьшая «расход» воды.

Охладился воздух в помещении? Например, кто-то открыл двери на улицу. Разница плотностей опять возросла, увеличив напор воды.

Недостатки и преимущества систем отопления с естественной циркуляцией

К недостаткам водяных систем отопления с естественной циркуляцией можно отнести:

  • Небольшое циркуляционное давление, которое определяет ограниченное использование таких систем отопления - небольшой горизонтальный радиус действия (до 30 м).
  • Большая инертность системы отопления, обусловленная большим объемом теплоносителя в системе и низким циркуляционным давлением.
  • Вероятность замерзания воды в расширительном баке открытого типа, который, обычно находится в холодном (неотапливаемом) чердачном помещении.

Основным преимуществом таких систем является энергонезависимость котлов на твердом топливе. То есть такие системы можно использовать в домах, где отсутствует электроснабжение. Большая инертность системы из-за достаточно большого объема теплоносителя в системе может играть как положительную (некое подобие теплового аккумулятора при «потухшем» котле), так и отрицательную роль - значительное время изменения температуры системы, особенно на стадии запуска.

Виды схем отопления с естественной циркуляцией




Какую систему отопления с естественной циркуляцией теплоносителя Вы выберете? Надеемся правильную!


Кровеносная система - система сосудов и полостей, по которым происходит циркуляция крови. Благодаря циркуляции крови кислород и питательные вещества доставляются органам и тканям тела, а углекислый газ, другие продукты метаболизма и отходы жизнедеятельности выводятся. Кровеносная система - система сосудов и полостей, по которым происходит циркуляция крови. Благодаря циркуляции крови кислород и питательные вещества доставляются органам и тканям тела, а углекислый газ, другие продукты метаболизма и отходы жизнедеятельности выводятся. Кровеносные сосуды это полые трубки, по которым движется кровь. Сосуды, несущие кровь от сердца к органам называются артериями, а от органов к сердцу венами. В артериях и венах не осуществляется газообмен и диффузия питательных веществ, это просто путь доставки. По мере удаления кровеносных сосудов от сердца, они становятся мельче. Кровеносные сосуды это полые трубки, по которым движется кровь. Сосуды, несущие кровь от сердца к органам называются артериями, а от органов к сердцу венами. В артериях и венах не осуществляется газообмен и диффузия питательных веществ, это просто путь доставки. По мере удаления кровеносных сосудов от сердца, они становятся мельче.


Кровь с кислородом называется артериальной, а кровь с углекислым газом венозной. Кровь с кислородом называется артериальной, а кровь с углекислым газом венозной. Обмен веществами между кровью и интерстициальной жидкостью происходит через проницаемую стенку капилляров мелких сосудов, соединяющих артериальную и венозную системы. Обмен веществами между кровью и интерстициальной жидкостью происходит через проницаемую стенку капилляров мелких сосудов, соединяющих артериальную и венозную системы. Между артериями и венами находится микроциркуляторное русло, формирующее периферическую часть сердечно-сосудистой системы. Микроциркуляторное русло представляет систему мелких сосудов. Именно здесь происходят процессы обмена между кровью и тканями. Между артериями и венами находится микроциркуляторное русло, формирующее периферическую часть сердечно-сосудистой системы. Микроциркуляторное русло представляет систему мелких сосудов. Именно здесь происходят процессы обмена между кровью и тканями.




В самом общем виде эта транспортная система состоит из мышечного четырехкамерного насоса (сердца) и многих каналов (сосудов). По главным составляющим кровеносной системы кровеносные сосуды делятся на три основных типа: артерии, капилляры и вены. Артерии несут кровь от сердца. Они разветвляются на сосуды все меньшего диаметра, по которым кровь поступает во все части тела. По главным составляющим кровеносной системы кровеносные сосуды делятся на три основных типа: артерии, капилляры и вены. Артерии несут кровь от сердца. Они разветвляются на сосуды все меньшего диаметра, по которым кровь поступает во все части тела.




Сердце полый мышечный орган, который последовательностью сокращений и расслаблений перекачивает кровь по сосудам. Сердце полый мышечный орган, который последовательностью сокращений и расслаблений перекачивает кровь по сосудам. Стенка сердца имеет три слоя: внутренний эндокард (его выросты образуют клапаны), средний миокард (сердечная мышца, сокращение происходит не произвольно, предсердия и желудочки не соединяются между собой), наружный эпикард (покрывает поверхность сердца, служит внутренним листком околосердечной серозной оболочки перикарда). Стенка сердца имеет три слоя: внутренний эндокард (его выросты образуют клапаны), средний миокард (сердечная мышца, сокращение происходит не произвольно, предсердия и желудочки не соединяются между собой), наружный эпикард (покрывает поверхность сердца, служит внутренним листком околосердечной серозной оболочки перикарда). Мышечная ткань, которая способствует перекачиванию крови, сердца млекопитающих не имеет возможности восстанавливаться после повреждений. Мышечная ткань, которая способствует перекачиванию крови, сердца млекопитающих не имеет возможности восстанавливаться после повреждений.




Сердце человека разделяется перегородками на четыре камеры, которые заполняются кровью не одновременно. Сердце человека разделяется перегородками на четыре камеры, которые заполняются кровью не одновременно. Две нижние толстостенные камеры - желудочки, играющие роль нагнетающего насоса получают кровь из верхних камер и, сокращаясь, направляют ее в артерии. Сокращения желудочков и создают то, что называют сердцебиениями. Две нижние толстостенные камеры - желудочки, играющие роль нагнетающего насоса получают кровь из верхних камер и, сокращаясь, направляют ее в артерии. Сокращения желудочков и создают то, что называют сердцебиениями. Две верхние камеры – предсердия - это тонкостенные резервуары, которые легко растягиваются, вмещая в интервалах между сокращениями поступающую из вен кровь. Две верхние камеры – предсердия - это тонкостенные резервуары, которые легко растягиваются, вмещая в интервалах между сокращениями поступающую из вен кровь. Левый и правый отделы сердца изолированы друг от друга. Правый отдел получает бедную кислородом кровь, оттекающую от тканей организма, и направляет ее в легкие; левый отдел получает насыщенную кислородом кровь из легких и направляет ее к тканям всего тела. Левый и правый отделы сердца изолированы друг от друга. Правый отдел получает бедную кислородом кровь, оттекающую от тканей организма, и направляет ее в легкие; левый отдел получает насыщенную кислородом кровь из легких и направляет ее к тканям всего тела.





Во время работы сердца возникают звуки тоны: Систолический низкий, продолжительный (колебание створок, захлопываются двух- и трёх- створчатые клапаны, колебание натягивают сухожильные нити). Систолический низкий, продолжительный (колебание створок, захлопываются двух- и трёх- створчатые клапаны, колебание натягивают сухожильные нити). Диастолический короткий, высокий (захлопывают полулунные клапаны аорты и лёгочного ствола). Диастолический короткий, высокий (захлопывают полулунные клапаны аорты и лёгочного ствола). Сердце сокращается ритмично в условиях покоя с частотой 6070 ударов в минуту. Частота ниже 60 брадикардия, выше 90 тахикардия. Сокращение мышц сердца систола, расслабление диастола. Полный цикл сердечной деятельности 0,8 секунд. Сокращение предсердий 0,1 секунд, сокращение желудочков 0,3 секунд, пауза 0,4 секунд. Сердце сокращается ритмично в условиях покоя с частотой 6070 ударов в минуту. Частота ниже 60 брадикардия, выше 90 тахикардия. Сокращение мышц сердца систола, расслабление диастола. Полный цикл сердечной деятельности 0,8 секунд. Сокращение предсердий 0,1 секунд, сокращение желудочков 0,3 секунд, пауза 0,4 секунд. Первыми сокращаются предсердия: вначале правое, почти сразу же за ним левое. Эти сокращения обеспечивают быстрое заполнение кровью расслабленных желудочков. Затем сокращаются желудочки, с силой выталкивающие содержащуюся в них кровь. В это время предсердия расслабляются и заполняются кровью из вен. Первыми сокращаются предсердия: вначале правое, почти сразу же за ним левое. Эти сокращения обеспечивают быстрое заполнение кровью расслабленных желудочков. Затем сокращаются желудочки, с силой выталкивающие содержащуюся в них кровь. В это время предсердия расслабляются и заполняются кровью из вен.


РАБОТА СЕРДЦА. Кровь попадает в правое предсердие по двум крупным венам - верхней полой вене (1), приносящей кровь от верхней половины тела, и нижней полой вене (2), дренирующей нижнюю половину тела. Из правого предсердия кровь течет в правый желудочек и быстро нагнетается через легочные артерии (3) в легкие, где насыщается кислородом. Возвращаясь по легочным венам (4) в левое предсердие, насыщенная кислородом кровь попадает оттуда в мощный левый желудочек, сильные сокращения которого проталкивают ее через самый крупный сосуд, аорту (5), к тканям организма. Главными ветвями аорты, снабжающими кровью верхнюю половину тела, являются безымянная артерия (6), левая общая сонная артерия (7) и левая подключичная артерия (8). Кровь к нижней половине тела направляется по нисходящей аорте. ПП, ЛП - правое предсердие, левое предсердие; ПЖ, ЛЖ - правый желудочек, левый желудочек.














Сердечнососудистая система человека образует два круга кровообращения: большой и малый. Большой круг кровообращения начинается в левом желудочке и оканчивается в правом предсердии, куда впадают полые вены Большой круг кровообращения начинается в левом желудочке и оканчивается в правом предсердии, куда впадают полые вены Малый круг кровообращения начинается в правом желудочке, из которого выходит лёгочный ствол, и оканчивается в левом предсердии, в которое впадают лёгочные вены Малый круг кровообращения начинается в правом желудочке, из которого выходит лёгочный ствол, и оканчивается в левом предсердии, в которое впадают лёгочные вены Большой круг кровообращения обеспечивает кровью все органы и ткани. Большой круг кровообращения обеспечивает кровью все органы и ткани. Малый круг кровообращения ограничен циркуляцией крови в лёгких, здесь происходит обогащение крови кислородом и выведение углекислого газа. Малый круг кровообращения ограничен циркуляцией крови в лёгких, здесь происходит обогащение крови кислородом и выведение углекислого газа.






Эритроциты - красные кровяные клетки, транспортирующие кислород к тканям и углекислый газ к легким. Эритроцит имеет форму двояковогнутого диска, что намного увеличивает его поверхность. Красный цвет эритроцита зависит от особого вещества - гемоглобина. В легких он присоединяет к себе кислород и становится оксигемоглобином. В тканях это соединение распадается на кислород и гемоглобин. Кислород используется клетками организма, а гемоглобин, присоединив к себе углекислый газ, возвращается в легкие, отдает углекислый газ и вновь присоединяет кислород. Эритроциты - красные кровяные клетки, транспортирующие кислород к тканям и углекислый газ к легким. Эритроцит имеет форму двояковогнутого диска, что намного увеличивает его поверхность. Красный цвет эритроцита зависит от особого вещества - гемоглобина. В легких он присоединяет к себе кислород и становится оксигемоглобином. В тканях это соединение распадается на кислород и гемоглобин. Кислород используется клетками организма, а гемоглобин, присоединив к себе углекислый газ, возвращается в легкие, отдает углекислый газ и вновь присоединяет кислород. Равенство реакции образования и распада оксигемоглобина выглядит так: в легких Hb + 4О2 = HbО8; в тканях HbO8 = Hb + 4О2. Равенство реакции образования и распада оксигемоглобина выглядит так: в легких Hb + 4О2 = HbО8; в тканях HbO8 = Hb + 4О2. Оксигемоглобин имеет более светлую окраску, и потому обогащенная кислородом артериальная кровь выглядит ярко-алой. Гемоглобин, оставшийся без кислорода, темно-красный. Поэтому венозная кровь значительно темнее артериальной. Оксигемоглобин имеет более светлую окраску, и потому обогащенная кислородом артериальная кровь выглядит ярко-алой. Гемоглобин, оставшийся без кислорода, темно-красный. Поэтому венозная кровь значительно темнее артериальной.


У млекопитающих зрелые эритроциты ядер не имеют: они теряются в процессе развития. Двояковогнутая форма эритроцита и отсутствие ядра способствует переносу газов, так как увеличенная поверхность клетки быстрее поглощает кислород, а отсутствие ядра позволяет использовать для транспортировки кислорода и углекислого газа весь объем клетки. У мужчин в 1 мм 3 крови содержится в среднем 4,5-5 млн эритроцитов, у женщин - 4-4,5 млн. У млекопитающих зрелые эритроциты ядер не имеют: они теряются в процессе развития. Двояковогнутая форма эритроцита и отсутствие ядра способствует переносу газов, так как увеличенная поверхность клетки быстрее поглощает кислород, а отсутствие ядра позволяет использовать для транспортировки кислорода и углекислого газа весь объем клетки. У мужчин в 1 мм 3 крови содержится в среднем 4,5-5 млн эритроцитов, у женщин - 4-4,5 млн. Лейкоциты - клетки крови с хорошо развитыми ядрами. Их называют белыми кровяными клетками, хотя на самом деле они бесцветные. Основная функция лейкоцитов - распознавание и уничтожение чужеродных соединений и клеток, которые оказываются во внутренней среде организма. Известны различные виды лейкоцитов: нейтрофилы, базофилы, эозинофилы. Число лейкоцитов варьирует в пределах 4-8 тыс. в 1 мм 3, что связано с наличием инфекции в организме, со временем суток, едой. Лейкоциты способны к амебовидному движению. Обнаружив чужеродное тело, они ложноножками захватывают его, поглощают и уничтожают. Это явление было открыто Ильей Ильичом Мечниковым () и названо фагоцитозом, а сами лейкоциты фагоцитами. Лейкоциты - клетки крови с хорошо развитыми ядрами. Их называют белыми кровяными клетками, хотя на самом деле они бесцветные. Основная функция лейкоцитов - распознавание и уничтожение чужеродных соединений и клеток, которые оказываются во внутренней среде организма. Известны различные виды лейкоцитов: нейтрофилы, базофилы, эозинофилы. Число лейкоцитов варьирует в пределах 4-8 тыс. в 1 мм 3, что связано с наличием инфекции в организме, со временем суток, едой. Лейкоциты способны к амебовидному движению. Обнаружив чужеродное тело, они ложноножками захватывают его, поглощают и уничтожают. Это явление было открыто Ильей Ильичом Мечниковым () и названо фагоцитозом, а сами лейкоциты фагоцитами. Большая группа клеток крови называется лимфоцитами, поскольку созревание их завершается в лимфатических узлах и в вилочковой железе (тимусе). Эти клетки способны опознавать химическую структуру чужеродных соединений и вырабатывать антитела, которые нейтрализуют или уничтожают эти чужеродные соединения. Большая группа клеток крови называется лимфоцитами, поскольку созревание их завершается в лимфатических узлах и в вилочковой железе (тимусе). Эти клетки способны опознавать химическую структуру чужеродных соединений и вырабатывать антитела, которые нейтрализуют или уничтожают эти чужеродные соединения.